Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.136
1.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727268

Treatment strategies for steatohepatitis are of special interest given the high prevalence of obesity and fatty liver disease worldwide. This study aimed to investigate the potential therapeutic mechanism of L-carnitine (LC) and Ginkgo biloba leaf extract (GB) supplementation in ameliorating the adverse effects of hyperlipidemia and hepatosteatosis induced by a high-cholesterol diet (HCD) in an animal model. The study involved 50 rats divided into five groups, including a control group, a group receiving only an HCD, and three groups receiving an HCD along with either LC (300 mg LC/kg bw), GB (100 mg GB/kg bw), or both. After eight weeks, various parameters related to lipid and glucose metabolism, antioxidant capacity, histopathology, immune reactivity, and liver ultrastructure were measured. LC + GB supplementation reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, glucose, insulin, HOMA-IR, alanine transaminase, and aspartate transaminase levels and increased high-density lipoprotein cholesterol levels compared with those in the HCD group. Additionally, treatment with both supplements improved antioxidant ability and reduced lipid peroxidation. The histological examination confirmed that the combination therapy reduced liver steatosis and fibrosis while also improving the appearance of cell organelles in the ultrastructural hepatocytes. Finally, the immunohistochemical analysis indicated that cotreatment with LC + GB upregulated the immune expression of GLP-1 and ß-Cat in liver sections that were similar to those of the control animals. Mono-treatment with LC or GB alone substantially but not completely protected the liver tissue, while the combined use of LC and GB may be more effective in treating liver damage caused by high cholesterol than either supplement alone by regulating hepatic oxidative stress and the protein expression of GLP-1 and ß-Cat.


Carnitine , Dietary Supplements , Dyslipidemias , Ginkgo biloba , Liver , Plant Extracts , Animals , Liver/drug effects , Liver/pathology , Liver/metabolism , Carnitine/pharmacology , Male , Rats , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology , Fatty Liver/metabolism , Rats, Sprague-Dawley , Lipid Metabolism/drug effects , Antioxidants/pharmacology , Diet, High-Fat/adverse effects , Ginkgo Extract
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38612401

Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.


Melanoma , Humans , Melanoma/drug therapy , Miconazole/pharmacology , Clotrimazole , Reactive Oxygen Species , Mitochondria , Carnitine/pharmacology , Adenosine Triphosphate
3.
Hepatol Commun ; 8(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38619434

BACKGROUND: Recent reports have unveiled the potential utility of l-carnitine to alleviate metabolic dysfunction-associated steatohepatitis (MASH) by enhancing mitochondrial metabolic function. However, its efficacy at preventing the development of HCC has not been assessed fully. METHODS: l-carnitine (2 g/d) was administered to 11 patients with MASH for 10 weeks, and blood liver function tests were performed. Five patients received a serial liver biopsy, and liver histology and hepatic gene expression were evaluated using this tissue. An atherogenic plus high-fat diet MASH mouse model received long-term l-carnitine administration, and liver histology and liver tumor development were evaluated. RESULTS: Ten-week l-carnitine administration significantly improved serum alanine transaminase and aspartate transaminase levels along with a histological improvement in the NAFLD activity score, while steatosis and fibrosis were not improved. Gene expression profiling revealed a significant improvement in the inflammation and profibrotic gene signature as well as the recovery of lipid metabolism. Long-term l-carnitine administration to atherogenic plus high-fat diet MASH mice substantially improved liver histology (inflammation, steatosis, and fibrosis) and significantly reduced the incidence of liver tumors. l-carnitine directly reduced the expression of the MASH-associated and stress-induced transcriptional factor early growth response 1. Early growth response 1 activated the promoter activity of neural precursor cell expressed, developmentally downregulated protein 9 (NEDD9), an oncogenic protein. Thus, l-carnitine reduced the activation of the NEDD9, focal adhesion kinase 1, and AKT oncogenic signaling pathway. CONCLUSIONS: Short-term l-carnitine administration ameliorated MASH through its anti-inflammatory effects. Long-term l-carnitine administration potentially improved the steatosis and fibrosis of MASH and may eventually reduce the risk of HCC.


Carcinoma, Hepatocellular , Fatty Liver , Liver Neoplasms , Humans , Animals , Mice , Liver Neoplasms/prevention & control , Carcinoma, Hepatocellular/prevention & control , Fatty Liver/drug therapy , Fatty Liver/prevention & control , Carnitine/pharmacology , Carnitine/therapeutic use , Fibrosis , Inflammation , Adaptor Proteins, Signal Transducing
4.
J Nanobiotechnology ; 22(1): 130, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532399

Traditional eye drops are administered via topical instillation. However, frequent dosing is needed due to their relatively rapid precorneal removal and low ocular bioavailability. To address these issues, stearoyl L-carnitine-modified nanoemulsions (SC-NEs) were fabricated. The physicochemical properties of SC-NEs in terms of size, morphology, zeta potential, encapsulation efficiency, and in vitro drug release behavior were characterized. The cellular uptake and mechanisms of SC-NEs were comprehensively studied in human corneal epithelial cells and the stearoyl L-carnitine ratio in SC-NEs was optimized. The optimized SC-NEs could target the novel organic cation/carnitine transporter 2 (OCTN2) and amino acid transporter B (0 +) (ATB0,+) on the corneal epithelium, which led to superior corneal permeation, ocular surface retention ability, ocular bioavailability. Furthermore, SC-NEs showed excellent in vivo anti-inflammatory efficacy in a rabbit model of endotoxin-induced uveitis. The ocular safety test indicated that the SC-NEs were biocompatible. In general, the current study demonstrated that OCTN2 and ATB0,+-targeted nanoemulsions were promising ophthalmologic drug delivery systems that can improve ocular drug bioavailability and boost the therapeutic effects of drugs for eye diseases.


Drug Delivery Systems , Epithelial Cells , Animals , Humans , Rabbits , Solute Carrier Family 22 Member 5/metabolism , Biological Transport , Epithelial Cells/metabolism , Carnitine/metabolism , Carnitine/pharmacology
5.
Eur Rev Med Pharmacol Sci ; 28(5): 1680-1694, 2024 Mar.
Article En | MEDLINE | ID: mdl-38497852

OBJECTIVE: The goal of this study was to investigate the potential protective effect of L-carnitine (20 mg/kg bw, 1/20 LD 50) against aluminum chloride (AlCl3) on the quality of the male rats' testicles and sperm, as well as to determine whether or not the effects of AlCl3 could be counteracted by using L-carnitine as an antioxidant. MATERIALS AND METHODS: Six groups of 36 adult male albino rats (n=6) were randomly formed. In Group I (Gp I), saline injection was given orally as a control. Group II (Gp II) was injected orally with 75 mg/kg body weight of L-carnitine. Group III (Gp III) was given a high dose of L-carnitine (150 mg/kg body weight) orally, while Group IV (G IV) was given a low dose of AlCl3 (20 mg/kg body weight). Group V (Gp V) was given an oral injection of AlCl3 (20 mg/kg) and L-carnitine (75 mg/kg body weight). Group VI (Gp VI) was given AlCl3 at a dose of 20 mg/kg and L-carnitine at a dose of 150 mg/kg body weight for 60 days. The reproductive capacity of each group was assessed. Thus, in addition to histopathological analysis and the comet assay to evaluate sperm DNA deterioration, final body weight, testicular weight change, and sperm analysis were carried out. RESULTS: The findings revealed that AlCl3 caused a significant decrease in final body weight, relative weight of sex organs, sperm concentration, motility and viability, serum testosterone concentration, and a significant increase in sperm abnormalities. Furthermore, AlCl3 caused visible changes in the histological structure of the testis. CONCLUSIONS: L-carnitine treatment alleviated the harmful effects of AlCl3, as evidenced histopathologically by a noticeable improvement in testis tissues. When it comes to treating AlCl3-induced reproductive toxicity in male rat testes, L-carnitine shows promise.


Antioxidants , Testis , Male , Rats , Animals , Aluminum Chloride , Antioxidants/pharmacology , Semen , Carnitine/pharmacology , Body Weight
6.
Signal Transduct Target Ther ; 9(1): 64, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38453925

Despite the successful application of immune checkpoint therapy, no response or recurrence is typical in lung cancer. Cancer stem cells (CSCs) have been identified as a crucial player in immunotherapy-related resistance. Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, is highly regulated by cellular metabolism remolding and has been shown to have synergistic effects when combined with immunotherapy. Metabolic adaption of CSCs drives tumor resistance, yet the mechanisms of their ferroptosis defense in tumor immune evasion remain elusive. Here, through metabolomics, transcriptomics, a lung epithelial-specific Cpt1a-knockout mouse model, and clinical analysis, we demonstrate that CPT1A, a key rate-limiting enzyme of fatty acid oxidation, acts with L-carnitine, derived from tumor-associated macrophages to drive ferroptosis-resistance and CD8+ T cells inactivation in lung cancer. Mechanistically, CPT1A restrains ubiquitination and degradation of c-Myc, while c-Myc transcriptionally activates CPT1A expression. The CPT1A/c-Myc positive feedback loop further enhances the cellular antioxidant capacity by activating the NRF2/GPX4 system and reduces the amount of phospholipid polyunsaturated fatty acids through ACSL4 downregulating, thereby suppressing ferroptosis in CSCs. Significantly, targeting CPT1A enhances immune checkpoint blockade-induced anti-tumor immunity and tumoral ferroptosis in tumor-bearing mice. The results illustrate the potential of a mechanism-guided therapeutic strategy by targeting a metabolic vulnerability in the ferroptosis of CSCs to improve the efficacy of lung cancer immunotherapy.


Ferroptosis , Lung Neoplasms , Animals , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cell Line, Tumor , CD8-Positive T-Lymphocytes , Ferroptosis/genetics , Immunotherapy , Carnitine/pharmacology
7.
Environ Sci Pollut Res Int ; 31(12): 18813-18825, 2024 Mar.
Article En | MEDLINE | ID: mdl-38349499

Myocardial ischemia/reperfusion (I/R) injury is a growing concern for global public health. This study seeks to explore the potential protective effects of L-carnitine (LC) against heart ischemia-reperfusion injury in rats. To induce I/R injury, the rat hearts underwent a 30-min ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. We evaluated cardiac function through electrocardiography and heart rate variability (HRV) and conducted pathological examinations of myocardial structure. Additionally, the study investigated the influence of LC on myocardial apoptosis, inflammation, and oxidative stress in the context of I/R injury. The results show that pretreatment with LC led to improvements in the observed alterations in ECG waveforms and HRV parameters in the nontreated ischemic reperfusion model group, although most of these changes did not reach statistical significance. Similarly, although without a significant difference, LC reduced the levels of proinflammatory cytokines when compared to the values in the nontreated ischemic rat group. Furthermore, LC restored the reduced expressions of SOD1, SOD2, and SOD3. Additionally, LC significantly reduced the elevated Bax expressions and showed a nonsignificant increase in Bcl-2 expression, resulting in a favorable adjustment of the Bcl-2/Bax ratio. We also observed a significant enhancement in the histological appearance of cardiac muscles, a substantial reduction in myocardial fibrosis, and suppressed CD3 + cell proliferation in the ischemic myocardium. This small-scale, experimental, in vivo study indicates that LC was associated with enhancements in the pathological findings in the ischemic myocardium in the context of ischemia/reperfusion injury in this rat model. Although statistical significance was not achieved, LC exhibits potential and beneficial protective effects against I/R injury. It does so by modulating the expression of antioxidative and antiapoptotic genes, inhibiting the inflammatory response, and enhancing autonomic balance, particularly by increasing vagal tone in the heart. Further studies are necessary to confirm and elaborate on these findings.


Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , bcl-2-Associated X Protein/metabolism , Carnitine/pharmacology , Myocardium/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis
8.
Mol Nutr Food Res ; 68(8): e2300614, 2024 Apr.
Article En | MEDLINE | ID: mdl-38389158

SCOPE: Comprehensive assessment of l-carnitine's safety and effectiveness in reducing inflammatory markers in osteoarthritis (OA) patients. METHODS AND RESULTS: Journal articles on l-carnitine for OA are gathered using computer searches of PubMed, Embase, the Cochrane Library, and Web of Science. The kind of literature that is found is restricted to clinical randomized controlled trials (RCTs). The Cochrane Handbook risk of bias assessment tool RevMan 5.4 software is used to conduct a meta-analysis. The systematic assessment comprises eight trials totaling 619 patients; the included studies' quality is mediocre. The study's findings demonstrate that OA patients' Western Ontario and McMaster University (WOMAC) function improves and that treatment efficacy outperforms that of the control group (mean difference [MD] = -7.75, 95% CI [-14.63, -0.86]; Z = 2.21; p = 0.03), WOMAC total (MD = -10.24, 95% CI [-18.97, -1.51]; Z = 2.30; p = 0.02), and visual analogue scale (VAS) pain (MD = -14.01, 95% CI [-16.16, -11.85]; Z = 12.74; p < 0.00001). The studies that are methodically reviewed also discover heterogeneity, which may have resulted from the created pooled data and requires more analysis. CONCLUSION: In patients with OA, l-carnitine effectively decreases clinical signs and symptoms, inflammatory markers, pain, and stiffness indicators, and significantly improves WOMAC and VAS scores.


Carnitine , Dietary Supplements , Osteoarthritis , Humans , Carnitine/pharmacology , Carnitine/administration & dosage , Osteoarthritis/drug therapy , Randomized Controlled Trials as Topic
9.
Transfus Clin Biol ; 31(2): 87-94, 2024 May.
Article En | MEDLINE | ID: mdl-38266909

BACKGROUND: Micro RNAs are known as the main regulator of messenger RNA translation in platelets and have a vital role in process of apoptosis during platelet storage. Our pervious study revealed that the expression of miR-145 and miR-326 changed significantly in platelets under maintenance conditions. This study aimed to evaluate the effect of L-carnitine (LC) as an additive to augment platelet quality by changing the microRNA expression. METHODS: We used ten platelet concentrate (PC) bags and divided each into two equal parts, LC- treated, and LC free PC. The expression of miR-145 and miR-326 were determined using real-time PCR. Moreover, we measured platelet count, platelet aggregation, platelet viability, and lactate dehydrogenase activity in all samples. RESULTS: The miR-326 expression significantly increased during platelet storage with mean fold changes of 3.2 for the control and 2.5 for LC- treated PC. The mean fold changes in miR-145 expression was less in the control PC (0.52) compared to the LC- treated PC (0.79). Increased levels of platelet count, platelet aggregation, and platelet viability were found in the LC-treated compared to the untreated PC. CONCLUSION: LC has a protective effect on platelet apoptosis, reduces the expression of apoptotic microRNA, and prevents the reduction of anti-apoptotic microRNA.


MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Blood Preservation , Carnitine/pharmacology , Blood Platelets/metabolism , Platelet Aggregation
10.
J Ovarian Res ; 17(1): 9, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38191449

OBJECTIVE: To investigate the effect of L-carnitine supplementation during the controlled ovarian stimulation (COS) cycle with antagonist protocol in patients with polycystic ovary syndrome (PCOS) diagnosis undergoing IVF/ICSI treatment. METHODS AND MATERIALS: This was a double-blind clinical trial study including 110 patients with PCOS attended to Royan Institute between March 2020 and February 2023. At the beginning of the COS cycle, the eligible patients were allocated into two groups randomly according to the coding list of the drugs prepared by the statistical consultant. In the experimental group, patients received 3 tablets daily (L-carnitine 1000 mg) from the second day of menstruation of the previous cycle until the puncture day in the cases of freeze-all embryos (6 weeks) or until the day of the pregnancy test (8 weeks) in fresh embryo transfer cycle. In the control group, patients received 3 placebo tablets for the same period of time. Weight assessment and fasting blood sugar and insulin tests, as well as serum lipid profile were also measured at the baseline and ovum pick-up day. The results of the COS cycle as well as the implantation and pregnancy rates were compared between groups. RESULTS: Finally, 45 cases in L-carnitine group versus 47 cases in the placebo group were completed study per protocol. Data analysis showed that the two groups were homogeneous in terms of demographic characteristics and baseline laboratory tests and severity of PCOS. There is no statistically significant difference in terms of the oocyte recovery ratio and oocyte maturity rate, and the number and quality of embryos, as well as the rates of the fertilization, chemical and clinical pregnancy between groups. However, the means of weight (P < 0.001) and serum levels of fasting blood sugar (P = 0.021), fasting insulin (P = 0.004), triglyceride (P < 0.001) and cholesterol (P < 0.001), LDL (P < 0.001) have significantly decreased in women after consuming L-carnitine supplementation. CONCLUSION: The oral intake of L-carnitine during COS in PCOS women for 6 weeks had no effect on COS and pregnancy outcomes. However, taking this supplement for 6 weeks has been associated with weight loss and improved lipid profile and serum glucose. TRIAL REGISTRATION: The study was registered in the Clinicaltrials.gov site on December 17, 2020 (NCT04672720).


Insulins , Polycystic Ovary Syndrome , Pregnancy , Humans , Female , Carnitine/pharmacology , Carnitine/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Blood Glucose , Sperm Injections, Intracytoplasmic , Lipids
11.
Gene ; 901: 148128, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38181927

Cyclophosphamide (CP), as an anti-cancer drug, is frequently used to treat various types of cancer. A decreased number of ovarian follicles impaired normal ovarian function, and subsequent premature ovarian failure (POF) presented as a side effect of cyclophosphamide usage. These events may eventually affect the fertility rate of individuals. The present study showed the effect of cyclophosphamide on ovarian reserves and the protective effect of L-carnitine (LC) as an antioxidant to prevent POF. To design the study, six to eight-week-old NMRI female mice were divided into three groups: control, cyclophosphamide (CP), and cyclophosphamide + L-carnitine (CP + LC). Mice received drugs intraperitoneally (IP) for 21 days. In the following 24 h after the last injection, both ovaries were used to evaluate the expression of Sohlh1 and Lhx8 genes by Real-time PCR. Furthermore, the alteration of Lhx8 promoter methylation was examined by Methylation-sensitive high-resolution melting analysis (MS-HRM). The present data showed the negative effect of CP on regulator genes of oogenesis including Sohlh1 and Lhx8. In addition, an examination of the epigenetic status of the Lhx8 gene showed a change in promoter methylation of this gene following cyclophosphamide injection. Although, L-carnitine is an effective antioxidant in relieving oxidative stress caused by cyclophosphamide and its damage, in the present study, however, the use of L-carnitine failed to protect the ovaries from changes caused by CP injection. So, using cyclophosphamide can alter the expression of folliculogenesis genes through its effects on epigenetic changes and may cause POF. The results of the present study showed that L-carnitine consumption can't protect the ovaries against the adverse effects of CP.


Antioxidants , Primary Ovarian Insufficiency , Humans , Mice , Female , Animals , Antioxidants/pharmacology , Transcription Factors , Carnitine/pharmacology , Carnitine/therapeutic use , Cyclophosphamide/adverse effects , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/genetics , Epigenesis, Genetic , Real-Time Polymerase Chain Reaction
12.
Fish Physiol Biochem ; 50(1): 77-96, 2024 Feb.
Article En | MEDLINE | ID: mdl-36604356

The widely available crop oil is an effective alternative to the increasingly scarce marine fish oil. However, simple alternative strategies have led to declining growth and the edible value of farmed fish. It is worthwhile to explore the effects of micro supplements in diets to improve the tolerance of fish to different dietary lipid sources, which finally optimizes the feeding strategies. This study aimed to investigate the regulation of L-carnitine and dietary oil conditions on nutrient composition, lipid metabolism, and glucose regulation of Rhynchocypris lagowskii. Four diets were prepared according to fish oil, fish oil supplemented with L-carnitine, corn oil, and corn oil supplemented with L-carnitine, and FO, LCFO, CO, and LCCO were labeled, respectively. R. lagowskii was fed experimental diets for 8 weeks, and the glucose tolerance test was performed. The CO diet significantly resulted in higher crude lipid content in muscle but a lower level of serum lipid parameters of R. lagowskii than the FO diet. However, dietary L-carnitine supplementation significantly reduced the crude lipid content in the hepatopancreas and muscle of the fish fed with the CO diet yet increased the serum lipid parameters. Additionally, the crude lipid content of muscle was reduced in the fish fed with an FO diet supplemented with L-carnitine. Compared with the FO diet, the CO diet significantly reduced the ratio of n3/n6 polyunsaturated fatty acid in the hepatopancreas and muscle of R.lagowskii. Dietary L-carnitine supplementation significantly reduced the contents of total saturated fatty acids and total monounsaturated fatty acids in hepatopancreas under both dietary lipid sources. The CO diet significantly up-regulated the expression of genes related to lipid uptake and adipogenesis in hepatopancreas, including lipoprotein lipase (lpl), acetyl-coenzyme A carboxylase alpha (accα), and sterol regulatory element binding protein-1 (srebp1), compared with the FO diet. While dietary L-carnitine supplementation significantly down-regulated the expressions of lpl, accα, srebp1, and fatty acid synthase in hepatopancreas and muscle of fish under both dietary lipid sources, along with up-regulated expression of carnitine palmitoyltransferase 1 in hepatopancreas. Moreover, the fish fed with a CO diet significantly increased the expression of glucose uptake and clearance and significantly down-regulated the expressions of glucose regulation-related genes, including glucose transporter 1, glycogen synthase 1, and phosphofructokinase in hepatopancreas and muscle, resulting in slower glucose uptake and clearance than fish fed with FO diet. Nevertheless, dietary L-carnitine supplementation up-regulated the expression of gluconeogenesis-related genes, including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the hepatopancreas of R. lagowskii under both dietary lipid sources. In conclusion, a higher dietary n6 PUFA resulted in lipid deposition, decreased serum lipid parameters, and limited serum glucose utilization of R. lagowskii. While the regulatory effect of L-carnitine on lipid metabolism and glucose utilization of R. lagowskii varies with dietary lipid sources and tissues.


Fatty Acids, Omega-3 , Lipid Metabolism , Animals , Corn Oil , Carnitine/pharmacology , Glucose , Dietary Fats , Diet/veterinary , Fish Oils , Dietary Supplements
13.
Reprod Domest Anim ; 59(1): e14504, 2024 Jan.
Article En | MEDLINE | ID: mdl-37942917

This study evaluated the effects of melatonin (MLT) and L-carnitine supplementation on sperm quality and antioxidant capacity during chilled and cryopreservation. Twenty-four ejaculates were collected from six Damascus bucks, 4 ejaculates each, from mid-September to mid-October 2022. The pooled semen from each collecting session was divided into 5 equal aliquots after being diluted (1:10) with Tris-citric acid egg yolk extender. The first aliquot served as a control (treatment-free). MLT was added to the second and third aliquots at low and high doses (LD: 4 and HD: 8 µL/mL) (v/v), respectively, while L-carnitine (LC) was added to the fourth and fifth aliquots at the same aforementioned doses. The aliquots were stored at 4°C for 48 h to assess sperm physical and morphological characteristics, alongside lipids peroxidase (LP) production and glutathione peroxidase (GPX) activity. The optimum doses of MLT and LC that showed potential for maintaining sperm characteristics throughout the chilled storage period were further investigated for protecting the spermatozoa after exposure to cryopreservation stress compared to the control. The results showed higher sperm motility (%) in the MLT-HD group, higher (p ≤ .05) sperm viability (%) in the MLT-LD, and both aliquots of LC at T24 hours of chilled preservation. Normal sperm (%) was higher (p ≤ .05) in both LC-LD and MLT-LD groups than other groups, while sperm acrosome integrity (%) was higher (p ≤ .05) in the LC-LD group. Morphological abnormalities (%) were improved (p ≤ .05) in all treated aliquots compared with control. The mean value of GPX activity was higher (p ≤ .05) in both MLT groups, while the concentration of LP increased (p ≤ .05) in the LC-HD or control groups. Furthermore, supplementing buck sperm medium with 4 µL/mL of MLT or LC improved (p < .05) the sperm characteristics and decreased (p < .05) DNA fragmentation index after thawing.


Melatonin , Semen Preservation , Male , Animals , Semen , Melatonin/pharmacology , Carnitine/pharmacology , Sperm Motility , Cryoprotective Agents/pharmacology , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa , Cryopreservation/veterinary , Cryopreservation/methods , Antioxidants/pharmacology
14.
Am J Physiol Renal Physiol ; 326(3): F338-F351, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38095023

A major complication of heat-related illness is the development of acute kidney injury (AKI) and damage to kidney tubular cells. Because kidney tubular cells use fatty acids as a major energy source, impaired fatty acid oxidation (FAO) may be associated with kidney injury due to heat stress. Carnitine is essential in the transportation of fatty acid into mitochondria for FAO. To date, there has been little attention given to the role of carnitine in heat-related illness and AKI. To evaluate the relationship between carnitine inadequacy and heat-related illness severity or AKI, we examined serum carnitine levels in patients with heat-related illness. We also used heat-stressed mice to investigate the effect of l-carnitine pretreatment on various kidney functions such as mitochondrial activity, proinflammatory changes in kidney macrophages, and histological damage. We observed an elevation in serum acylcarnitine levels, indicating carnitine insufficiency in patients with severe heat-related illness and/or AKI. l-Carnitine pretreatment ameliorated ATP production in murine tubular cell mitochondria and prevented a change in the kidney macrophage population dynamics observed in AKI: a decrease in tissue-resident macrophages, influx of bone marrow-derived macrophages, and change toward proinflammatory M1 polarization. In conclusion, carnitine insufficiency may be closely associated with severe heat-related illness and related AKI. Enhancement of the FAO pathway by l-carnitine pretreatment may prevent heat stress-induced AKI by restoring mitochondrial function.NEW & NOTEWORTHY Enhancing fatty acid oxidation (FAO) after acute kidney injury (AKI) improves renal outcomes. This report shows that carnitine insufficiency, which could inhibit FAO, correlates to severe heat-related illness and AKI in a clinical study. We also demonstrate that administering l-carnitine to mice improves mitochondrial respiratory function and prevents deleterious changes in renal macrophage, resulting in improved renal outcomes of heat-induced AKI. l-Carnitine may be an effective preventive treatment for severe heat-related illness and related AKI.


Acute Kidney Injury , Humans , Mice , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Kidney/metabolism , Carnitine/pharmacology , Carnitine/metabolism , Carnitine/therapeutic use , Mitochondria/metabolism , Heat-Shock Response , Fatty Acids/metabolism
15.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 300-309, 2024 Mar.
Article En | MEDLINE | ID: mdl-37867377

Current study hypothesized that dietary l-carnitine (LC) inclusion during the mating period ameliorates both metabolic status and reproductive performance of ewes. Seventy Baluchi ewes (52 ± 4.2 kg of bodyweight and 18 ± 6 months old of age) were enrolled in this study. Animals were randomly allocated into two dietary treatments, control (only basal diet) or basal diet plus supplementation with a rumen-protected LC (Carneon 20 Rumin-pro; 20% LC; Kaesler Nutrition GmbH) at the rate of 10 g/head/day from 21 days before until 35 days after introducing rams to the ewes (MP). Feed intake was monitored by subtracting the ort from feed offered. Blood sample collection was conducted on Days -10, +10 and +20 relative to MP. Pregnancy was confirmed on Day 30 post-MP. Feed intake of the ewes in the LC group was higher than the control (p < 0.05). LC supplementation increased the cholesterol concentration in the ewes (p < 0.05). Blood urea concentration of animals in the LC group was significantly lower than the control (p < 0.05). The mRNA expression of toll-like receptor 4 was evidently lower in animals supplemented with LC than the control (p < 0.05). Both lambing and fecundity rates in the LC group tended to be higher compared with the control. LC supplementation showed potential to alter certain metabolites in the ewes. A tendency for higher lambing rate may partly be driven by dams efficient energy partitioning to support foetal growth and maintaining pregnancy.


Carnitine , Rumen , Pregnancy , Sheep , Animals , Female , Male , Carnitine/pharmacology , Reproduction , Dietary Supplements , Diet/veterinary , Animal Feed/analysis
16.
Inflammopharmacology ; 32(1): 715-731, 2024 Feb.
Article En | MEDLINE | ID: mdl-37994991

Osteoarthritis (OA) is a degenerative joint disease, whereas the underlying molecular trails involved in its pathogenesis are not fully elucidated. Hence, the current study aimed to investigate the role of miRNA-373/P2X7/NLRP3/NF-κB trajectory in its pathogenesis as well as the possible anti-inflammatory effects of probenecid and l-carnitine in ameliorating osteoarthritis via modulating this pathway. In the current study, male Sprague Dawley rats were used and monoiodoacetate (MIA)-induced knee osteoarthritis model was adopted. Probenecid and/or L-carnitine treatments for 14 days succeeded in reducing OA knee size and reestablishing motor coordination and joint mobility assessed by rotarod testing. Moreover, different treatments suppressed the elevated serum levels of IL-1ß, IL-18, IL-6, and TNF-α via tackling the miRNA-373/P2X7/NLRP3/NF-κB, witnessed as reductions in protein expressions of P2X7, NLRP3, cleaved caspase-1 and NF-κB. These were accompanied by increases in procaspase-1 and IκB protein expression and in miRNA-373 gene expression OA knee to various extents. In addition, different regimens reversed the abnormalities observed in the H and E as well as Safranin O-Fast green OA knees stained sections. Probenecid or l-carnitine solely showed comparable results on the aforementioned parameters, whereas the combination therapy had the most prominent effect on ameliorating the aforementioned parameters. In conclusion, l-carnitine augmented the probenecid's anti-inflammatory effect to attenuate MIA-induced osteoarthritis in rats by provoking the miRNA-373 level and inhibiting the P2X7/NLRP3/NF-κB milieu, leading to the suppression of serum inflammatory cytokines: IL-1ß, IL-18, IL-6, and TNF-α. These findings suggest the possibility of using probenecid and l-carnitine as a useful therapeutic option for treatment of osteoarthritis.


Carnitine , MicroRNAs , Osteoarthritis, Knee , Animals , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Interleukin-18 , Interleukin-6 , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteoarthritis, Knee/drug therapy , Probenecid/pharmacology , Probenecid/therapeutic use , Rats, Sprague-Dawley , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Carnitine/pharmacology , Carnitine/therapeutic use
17.
Clin Ther ; 46(2): e73-e86, 2024 02.
Article En | MEDLINE | ID: mdl-38101999

PURPOSE: Hypertension stands as a prominent risk factor for cardiovascular disease, making it of utmost importance to address. Studies have shown that L-carnitine supplementation may lower blood pressure (BP) parameters in different populations. Therefore, we have conducted a systematic review and dose-response meta-analysis of published Randomized Controlled Trials (RCTs), including the most recent articles on the effect of L-carnitine supplementation on BP. METHODS: PubMed, ISI Web of Science, Cochrane databases, and Scopus were used to collect RCT studies published up to October 2022 without limitations in language. Inclusion criteria were adult participants and recipients of L-carnitine in oral supplemental forms. The funnel plot test, Begg's test, and Egger's test were used to examine publication bias. FINDINGS: After the search strategy, 22 RCTs (n = 1412) with 24 effect sizes fulfilled the criteria. It was found L-Carnitine supplementation did not have a significant effect on systolic blood pressure (SBP) (mm Hg) (weighted mean difference [WMD] = -1.22 mm Hg, 95% CI: -3.79, 1.35; P = 0.352; I2 = 85.0%, P < 0.001), and diastolic blood pressure (mm Hg) (WMD = -0.50 mm Hg, 95% CI: -1.49, 0.48; P = 0.318; I2 = 43.4%, P = 0.021) in the pooled analysis. Subgroup analyses have shown that L-carnitine supplementation had no lowering effect on SBP in any subgroup. However, there was a significant reduction in diastolic blood pressure in participants with a baseline body mass index >30 kg/m2 (WMD = -1.59 mm Hg; 95% CI: -3.11, -0.06; P = 0.041; I2 = 41.3%, P = 0.164). There was a significant nonlinear relationship between the duration of L-carnitine intervention and changes in SBP (coefficients = -6.83, P = 0.045). IMPLICATIONS: L-carnitine supplementation in adults did not significantly affect BP. But anyway, more studies should be done in this field on different individuals.


Carnitine , Hypertension , Adult , Humans , Carnitine/pharmacology , Blood Pressure , Dietary Supplements , Hypertension/drug therapy , Body Mass Index
18.
Sci Rep ; 13(1): 23033, 2023 12 27.
Article En | MEDLINE | ID: mdl-38155210

The vasospasm, which develops after subarachnoid hemorrhage (SAH), is an unenlightened table in terms of etiology and results. It is usually associated with decreased perfusion, which is associated with decreased blood flow distal to the affected artery and can be demonstrated radiologically. Acetyl-L-carnitine (ALCAR) can be found in brain tissue and easily crosses the blood-brain barrier. Therefore, in this study, we aimed to investigate the therapeutic efficacy of ALCAR, which is an effective antioxidant amine, on vasospasm development after experimental SAH. In our study, 35 adults male Wistar RATs weighing between 235-250 g were used. These RATs were divided into five groups with n = 7. Group 1 Control group, Group 2 SAH + SF (carrier solution), Group 3 SAH + ALCAR 50 mg\kg intraperitoneally, Group 4 SAH + ALCAR 100 mg\kg intraperitoneally and Group 5 SAH. Subarachnoid hemorrhage was induced by giving autologous arterial blood to the cisterna magna of the animals in groups 2, 3, 4, and 5. At 0.-12.- 24.- 36.- 48.- 60. and 72. h, Group 2 was injected with SF, Group 3 with intraperitoneally ALCAR 50 mg\kg, and Group 4 with intraperitoneally ALCAR 100 mg\kg, respectively. Following perfusion and fixation, the animals were subjected to a wide craniectomy, and the brain, cerebellum, and brain stems were removed globally. Then, sections were taken from the basilar arteries of all animals and photographed at 40X magnification. Basilar artery lumen cross-sectional areas, basilar artery areas, and wall thicknesses were measured from these sections. The basilar artery lumen cross-sectional area was found to be significantly larger in the groups in which SAH was formed and ALCAR 50 mg\kg and ALCAR 100 mg\kg were given compared to the group with only SAH and SAH + SF (p = 0.0408). Basilar artery wall thickness increased in all groups except the control group (p < 0.05). In light of all these findings, it was concluded in our study that Carnitine was effective in the resolution of vasospasm in the experimental SAH model.


Subarachnoid Hemorrhage , Vasospasm, Intracranial , Animals , Rats , Male , Disease Models, Animal , Carnitine/pharmacology , Carnitine/therapeutic use , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Acetylcarnitine/pharmacology , Acetylcarnitine/therapeutic use , Vasospasm, Intracranial/etiology , Vasospasm, Intracranial/complications , Rats, Wistar
19.
Front Endocrinol (Lausanne) ; 14: 1237882, 2023.
Article En | MEDLINE | ID: mdl-37929031

Background: Obesity, a multifactorial disorder with pandemic dimensions, is conceded a major culprit of morbidity and mortality worldwide, necessitating efficient therapeutic strategies. Nutraceuticals and functional foods are considered promising adjuvant/complementary approaches for weight management in individuals with obesity who have low adherence to conventional treatments. Current literature supports the weight-reducing efficacy of pro/pre/synbiotics or L-carnitine; however, the superiority of the nutraceutical joint supplementation approach over common single therapies to counter obesity and accompanying comorbidities is well documented. This study was designed to assess the effects of L-carnitine single therapy compared with L-carnitine and multistrain/multispecies synbiotic co-supplementation on anthropometric and cardiometabolic indicators in women with obesity. Methods: The current placebo-controlled double-blind randomized clinical trial was performed on 46 women with obesity, randomly allocated to either concomitant supplementation [L-carnitine tartrate (2 × 500 mg/day) + multistrain/multispecies synbiotic (1 capsule/day)] or monotherapy [L-carnitine tartrate (2 × 500 mg/day) + maltodextrin (1 capsule/day)] groups for 8 weeks. Participants in both groups received healthy eating dietary advice. Results: Anthropometric, lipid, and glycemic indices significantly improved in both intervention groups; however, L-carnitine + synbiotic co-administration elicited a greater reduction in the anthropometric measures including body mass index (BMI), body weight, and neck, waist, and hip circumferences (p < 0.001, <0.001, <0.001, = 0.012, and =0.030, respectively) after adjusting for probable confounders. Moreover, L-carnitine + synbiotic joint supplementation resulted in a greater reduction in fasting blood sugar (FBS), insulin (though marginal), and homeostatic model assessment of insulin resistance (HOMA-IR) and more increment in quantitative insulin sensitivity check index (QUICKI; p = 0.014, 0.051, 0.024, and 0.019, respectively) compared with the L-carnitine + placebo monosupplementation. No significant intergroup changes were found for the lipid profile biomarkers, except for a greater increase in high-density lipoprotein-cholesterol concentrations (HDL-C) in the L-carnitine + synbiotic group (p = 0.009). Conclusion: L-carnitine + synbiotic co-supplementation was more beneficial in ameliorating anthropometric indices as well as some cardiometabolic parameters compared with L-carnitine single therapy, suggesting that it is a promising adjuvant approach to ameliorate obesity or associated metabolic complications through potential synergistic or complementary mechanisms. Further longer duration clinical trials in a three-group design are demanded to verify the complementary or synergistic mechanisms. Clinical trial registration: www.irct.ir, Iranian Registry of Clinical Trials IRCT20080904001197N13.


Cardiovascular Diseases , Synbiotics , Female , Humans , Blood Glucose/metabolism , Carnitine/pharmacology , Iran , Lipids , Obesity/complications , Obesity/therapy , Tartrates
20.
Bull Exp Biol Med ; 175(6): 765-769, 2023 Oct.
Article En | MEDLINE | ID: mdl-37987945

On the model of alloxan-induced diabetes mellitus in rats, the development of oxidative stress and violation of the NO-producing function of the endothelium and internal organs was established. Structural changes in the vascular endothelium due to increased level of atherogenic LDL preventing access of L-arginine to endothelial NO synthase (eNOS) contribute to the development of endothelial dysfunction, which is paralleled by oxidative modification of L-arginine and the formation of inhibitors of eNOS expression (asymmetric dimethylarginine, L-NAME). These findings are indicative of reduced eNOS expression in experimental diabetes mellitus. Administration of L-arginine and its combination with L-carnitine caused an increase in the production NO metabolites and eNOS expression levels by 2.13 and 3.8 times, respectively. In parallel, improvement in the electrolyte excretory function of the kidneys, an increase in the Na,K-ATPase activity in organ homogenates, and a decrease in organ-specific enzymes in blood plasma were observed, which indicates the effectiveness of the correction of the identified violations. A way to eliminate metabolic and functional disorders with combinations of L-arginine and L-carnitine is pathogenetically substantiated. This methodological approach can be recommended for the prevention of microvascular complications in patients with type 1 diabetes mellitus.


Diabetes Mellitus, Experimental , Humans , Rats , Animals , Diabetes Mellitus, Experimental/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Endothelium, Vascular/metabolism , Arginine/pharmacology , Carnitine/pharmacology , Nitric Oxide/metabolism
...